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Generslization of a Method of Determining the Stebility of
Arbitrarily prranged Vortex trails
B. Dolspchiev
From Doklagg, AN USSR LXXVII, 6, %ggib
Translated by Morris D. Friedman

In the present note we give & simple and general derivation of
the necessary conditions for equilibrium of vortex trails with arbi-
trery mutual position of two of its parallel chains., These conditions
permit one to judge the stability or instability of each of three
possible arrangements: &) symmetrical trails; b) trails with stag-
gered vortex positions; and c) asymmetric trails. To this end, on
the one hand, we use the method of Kochin for small displacement in
the form thet he @ assumed for cases (&) and (b) and on the other
hand, we use the method of solving difrerentisl equaticons for the
perturbed motion of vortices set up in our work [2).

Resorting, as =m usuel, to the alternate considerations of vor-
tex systems (vortices with even index in one chain have the same dis-
placement and fortices with odd imed index another, whereby for esch of
the two chains these displacements are different, therefore, two ad-
jacent vorticés have different displacement) and introducing, corres-
pondingly, the displeacements azl', gzz', Szl", 622" (the prime
refers to the upper chain anc the double prime to the lower) which,

in particular, obey the conditions 6z = - gzl'; 5z2" = - gzlﬂ
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Kochin obtains the system:

d (8% =~ T (a8z,0 + B Sz,
az(‘g"l) LT (ada 2,")

8 I*1 (1)
d (8Zm = [T (BSzt+abzn
= 1 -_— 1 1
dt 8l™i
where 5
A=2-1/sin"s, - 1/cos®4 (2)
B = l/sinzd: - 1/cosfg
and
€ =T (A+ix); A=d/l ; X=1h) (3)
2

Here, 2h 1is the width of the trail, 2! is the distance between
two adjacent vortices in the seme chain and 2d is the dag of one
vortex chain with respect to the other. We have: for d =0 (A= 0),
the vortex chains are exactly kekm one below the other (symmetrical ar-
rangement); for d = /2 (A= %) they lag each other symmetrically
by [ (staggered position); for d{ Z/2 (A{}) they lag by an amount
less than Z (asymmetric arrengement). For brevity, let us put in (1)
qg=F ’TF/BI" and

8!— {i'-c. gn—--’” '“-n 4

2t = Z o+ =2 2" = & +(h =1 (4)

Then the system (1) becomes

dz' = qi(AZ' + BZ")

at

— (5)
dZ"
dt

-qi(BZ' + AZ")

If we add &nd subtract the left and right side of (5) we obtain

1}

a (Z' + Zn)
at

- (6)
d (2" - Z") = qi(&+B)(2'+z")
at

qi(4=B) (21 -2")
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But from (2) we find
A+B=-2 tan"c ; A - B = -2 cot’e (7)

and from (4) we obtain

yARE SPANE (§'+§”)+1('2‘+7")=X+ ivy=12
A2 (g'_s“).l.i( 7!_ r}")=i+ iT=w (8
ZV+In = (F'4E") -4+ ") =X-i1=3
T-Ts (g -1 =K
Now (6) reduces to
dzZ = qi(A-B)W=qi §
dt T - .
— - (g = -2q) (9)
dW = qi(a + B)Z = qiTZ
dt
where T = tanf ok

In order to be able to represent (9) in real form with the help
of a gystem of fonr differential eguations for the displacement, we write

T in the form

T=P+iQ; 1=P+1Q=P - iQ (10)
T PR+ Q°

and use the value of ¢ from (3). Ve have

tan> = 3 sin AT + i sinhx™ (11)
cos“L AT+ sinh®L xT

Finally, we obtain

p=1% sin® A gink® KT 5 Q=% sin AN sinhXT (12)
(cos®3 AT+ s:'Lr1h2%\<'\V)2 (cos®E T 4+ sinhz%mr)z
F=p/PP+q® 5 G= - P+ ¢° (18)

With the aid of (9) and (8) we can write
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é (X - iY) = qi(P + iQ(X + i)
at

- - - (14)
d (X - iY) = qi(P + 1Q)(X + 1Y)
at

whence the real system has the form
X = q(PX - Q) ; dy= q(FY + &)
at at
(15)

dX = q(PX - Q¥) ; dY = -q(PY + QX)
dt a

ct

Assuming for the particular solution of the above-mentioned sys-
tem the expressicns X = Me”t, X= Ne“’t, Y = Re™, Y= Se"“t’ we
find an algebraic system of equations, homogeneous with respect to

M, N, R, and S:

M- gPN+ggs =0
R+ gPS+gQN=0 (16)
N-gPM+gQR=0
S+§PQ+q H=0

The common condition of this system leads us to
- - 4, o o . —
o - (P + Qe + TEFH FTAPRE ) =0 )

the roots of which are

@) o 5,4 = +QVFP + Q0 + (PG - PQ) (18)

Substituting (13) in (18), we obtain for

w =+qP+1ig =+K(P + iQ) (19)
2y R
where K = E/m

The solutions of the system of differentiel equations (18) with

respect to the dlsplacements X, Y, -)Z, Y have the form eiKPtcos KQt

+HPt
and e~ sin KQt; with incressing t these displacements become



infinite as & consequence of the presence of the positive exponent in
the e xponential. Therefore, whatever the position of the vortices in
the trail, the latter in the case P # O is shown elrgedy unstable.
For stability, it 1s necessary that P=0 . From (12) , in the same
way, it follows that the greatest general necessary condition for
stability is the condition

sinh XTT = sin AT (20)
obteined by us earlier by other methods [51 .

Them, we established that the asymmetric trails may also be stsble,
provided only that the parsmeters A and X satisfy the relation (20),
From condition (2)), for A =3, is obtained the already known condi~
tion for stability of a Karmen staggered vortex street, namely, the nec-
essary conditicn

sinh X7 =1 (21)

As concerns symmetric trails, for which A= 0, then from (12) it
follows that in this case Q=0 and from (19) that £0= 4+ 2q; the
latter denotes the; existence of & solution of the form e-—2§t (g40) is
a fact corroborating the stability of the symmetric arrangement.

Retmrning to the stability of asymmetric trails, it is necessary
here not to forget that, assuming the possibility of sucha n arrangement
we assume the possibility of an obligue flow of vortex trails with which
the axis of the vortex system maintaining a constant direction to tue
basic stream, moves parallel to itself, forsaking the position of the

axis of symmetry of a streamlined body.

Actually, as is easy toconclude for thea symmetric arrangement



the velocity components equal

__,:__ tanh\m]l + tan® AT ]
41 banzmr + tank®xT

~iadk = I tan W[l - tanb®xw
47 tanz)\l'H tanh® T

where Vy #0 if 7[# 0, 3 . For A= O( symmetric trails) we

Us

(22)

Yy

have from (22)

Us = | cothxT; vy =0 (25)
41
For A= % (staggered vortices)
U, =T tanhx@; Vv, =0 (24)

41

Let us add that on the basis of formulas (22), (83), (24), (20)

and (21) it is easy to establish thet this dependence
\®| AR 1) (25)

holds, i.e. that for determined X , corresponding to any staple two-
perameter treils the latter moves slower than the symmetric trails, but
faster than the staggered. In conformity Wifh the xh above, it is easy
to obtain the property that for definite distances between vortices, 21)
the ssymmetric trail is always more stable than the staggered trail which
appears at the last phase of every kind of ejuilibrium posiiion. On the
latter fact we already checked in our succeeding work. Here we only note
thet thenks to the existance of steble slmost steggerec¢ vortices the
presence is fully explained of such relations which although different
from X =h/1 = 0.2805... is close to it. In conclusion, let us note
that the exposition here of the theory of stability of generalized (two

parameter) trails for small displacements is only spproximate. As will
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be evident in later sommunicstions, those trails, similarly steggered,
which Kochin considered, require revision in theory. We further show
that asymmetric trails, fulfilling condition (20) may be considered as

Kochin did, as the least unstable vortex mappinge.
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